337454(37)

B. E. (Fourth Semester) Examination, 2020 APR-MAY 2022

onigital monds in (New Scheme)

(Mech., Production and Automobile Branch)

KINEMATICS of MACHINES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d).

mlugan on and IIA an Unit . I

 $\min_{i} CD = 56 \max(and AD = 100 non, at the instant)$

- 1. (a) What is configuration diagram? What is its use? 2
 - (b) (i) Discuss various types of constrained motion. 2
 - (ii) What is a redundant link in a mechanism?

(iii) What are usual types of joints in a mechanism? 3

For the position of the mechanism shown in figure, find the velocity of the slider B for given configuration if the velocity of the slider A is 3 m/s.

In a four link mechanism, AB = 50 mm, BC = 66 mm, CD = 56 mm and AD = 100 mm. at the instant when $\angle DAB$ 60°, the link AB has an angular velocity of 10·5 rad/sec in the counter clockwise direction. Determine the velocity of the point E on the link BC when BE = 40 mm.

7

Unit - II

2. (a) What is an acceleration image? How is it helpful in determining the accelerations of offset points on a link?

(b) Derive Coriolis acceleration component.

not form accoloration, and deceleration during

(c) Determine the absolute accelerations of the slider for shown configuration diagram:

(d) Draw acceleration diagram for slider-crank mechanism. Assume all suitable data required.

Unit - III

- . (a) Define trace point and pressure angle.
 - (b) What is a tangent cam? Find the expression for the velocity of a roller follower for such a cam.
 - (c) Plot motion of the follower for:

337454(37)

337454(37)

PTO

- (i) Simple Harmonic Motion (SHM)
- (ii) Constant velocity

7

- (d) A cam is to give the following motion to a knife edged follower:
 - (i) To raise the follower through 30 mm with uniform acceleration and deceleration during 180° rotation of the cam.
 - (ii) To lower the follower with constant velocity during next 180° rotation of cam.

Minimum radius of cam is 30 mm and rotates clockwise. Draw the profile of the cam.

7

Unit - IV

- 4. (a) What is a reverted gear train? Where is it used? 2
 - (b) Each of two gears in a mesh has 48 teeth and a module of 8 mm. The teeth are of 20° involute profile. The arc of contact is 2.25 times the circular pitch. Determine the addendum.

7

(c) Two 20° involute spur gear mesh extremally and give a velocity ratio of 3. m = 3 mm and addendum

is equal to 1·1 module. If the pinion rotates at 120 rpm determine:

- (i) Minimum number of teeth on each wheel to avoid interference.
- (ii) Constant ratio

-7

An epicycle gear train shown in figure. Find the speed of gear B if

- (i) the gear A is fixed and
- (ii) the gear A revolves at 240 rpm clockwise instead of being fixed.

$$T_A = 30$$
, $T_B = 40$, $N_{arm(a)} = 80^{(ccw)}$.

Unit - V

is equal to 1:1, module,

rem determine.

5. (a) Define friction

2

(b) A conical pivot with angle of cone as 100° supports a load of 18 kN. The external radius is 2.5 times the internal radius. The shaft rotates at 150 rpm. If the intensity of pressure is to be 300 kN/m², and coefficient of friction as 0.05. What is the power lost in working against the friction?

7

(c) Derive ratio of friction: tension for V-belt

 $\frac{T_1}{T_2} = e^{\mu 0/\sin \alpha}$

7

(d) A bicycle and rider, travelling at 12 km/h on a level roads have a mass of 105 kg. A brake is applied to the rear wheel which is 800 mm in diameter. The pressure on the brake is 80 N and the coefficient of friction is 0.06. Find distance covered by the bicyle and number of turms of its wheel before coming to rest.

-